Skrining Novel Prebiotik Selective Fermentation Initiator (SFI) Untuk Bakteri Probiotik Elektrogenik Kulit

Authors

  • Prakoso Adi Program Studi Teknologi Hasil Pertanian, Sekolah Vokasi, Universitas Sebelas Maret, Indonesia
  • Rizka Mulyani Program Studi Teknologi Hasil Pertanian, Sekolah Vokasi, Universitas Sebelas Maret, Indonesia
  • John Jackson Yang Departemen Biokimia, Fakultas Kedokteran, Universitas Kristen Indonesia, Indonesia

DOI:

https://doi.org/10.20961/jaht.v1i1.261

Keywords:

electrogenic bacteria, novel SFI, screen, S. epidermidis

Abstract

The ability of electrogenic bacteria to generate electricity has been widely reported. In some cases of bacteria, the electricity production comes from the bacterial fermentation process of SFI compounds by these bacteria. Later, the resulted electrons are transferred out from inside to extracellular recipient molecules. Among of these studies has shown the ability of gram-positive bacteria S. epidermidis ATCC 12228 in terms of SFI compounds utilization to increase bacterial electron production and its application in the medical field. Based on these studies, the discovery of new SFI compounds becomes interesting to be explored. In this study, a new SFI compound was screened from 24 different compounds. The screen was initiated by testing the ability of these compounds to increase the fermentation activity of S. epidermidis ATCC 12228 in a 96-well plate. Determination of SFI compound was carried out by checking the exclusivity of the compound to increase the fermentation activity of S. epidermidis ATCC 12228. The selected SFI compound was then tested for cytotoxicity against this bacterium and its ability to increase the electron production of S. epidermidis ATCC 12228 using a microbial fuel cell (MCF). This study was successfully demonstrated the non-toxic properties of p-coumaric acid, also the ability of this compound to increase the fermentation activity and electron production of S. epidermidis ATCC 12228. This research is expected to be the first step to find another novel SFI compounds that will be useful in certain fields in the future.

References

Shi, L., et al., Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 2016. 14(10): p. 651-662.

Liu, X., et al., Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa. Appl Microbiol Biotechnol, 2019. 103(3): p. 1535-1544.

Kim, M.Y., et al., Metabolic shift of Klebsiella pneumoniae L17 by electrode-based electron transfer using glycerol in a microbial fuel cell. Bioelectrochemistry, 2019. 125: p. 1-7.

Light, S.H., et al., A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature, 2018. 562(7725): p. 140-144.

Wang, W., et al., Bacterial Extracellular Electron Transfer Occurs in Mammalian Gut. Analytical Chemistry, 2019. 91(19): p. 12138-12141.

Pankratova, G., L. Hederstedt, and L. Gorton, Extracellular electron transfer features of Gram-positive bacteria. Analytica Chimica Acta, 2019. 1076: p. 32-47.

Pankratova, G., et al., Extracellular Electron Transfer by the Gram-Positive Bacterium Enterococcus faecalis. Biochemistry, 2018. 57(30): p. 4597-4603.

Xayarath, B., F. Alonzo, 3rd, and N.E. Freitag, Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles. PLoS Pathog, 2015. 11(3): p. e1004707.

Nakatani, Y., et al., Unprecedented Properties of Phenothiazines Unraveled by a NDH-2 Bioelectrochemical Assay Platform. J Am Chem Soc, 2020. 142(3): p. 1311-1320.

Franza, T., et al., A partial metabolic pathway enables group b streptococcus to overcome quinone deficiency in a host bacterial community. Mol Microbiol, 2016. 102(1): p. 81-91.

Hiraishi, A., High-performance liquid chromatographic analysis of demethylmenaquinone and menaquinone mixtures from bacteria. J Appl Bacteriol, 1988. 64(2): p. 103-5.

Chen, C., et al., Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir. Appl Environ Microbiol, 2017. 83(7).

Finke, N., V. Vandieken, and B.B. Jørgensen, Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiology Ecology, 2007. 59(1): p. 10-22.

Sorokin, D.Y., E.N. Detkova, and G. Muyzer, Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. Extremophiles : life under extreme conditions, 2010. 14(1): p. 71-77.

Edwards, M.J., et al., Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria. Protein science : a publication of the Protein Society, 2020. 29(4): p. 830-842.

Byrd, A.L., Y. Belkaid, and J.A. Segre, The human skin microbiome. Nature Reviews Microbiology, 2018. 16(3): p. 143-155.

Balasubramaniam, A., et al., Skin Bacteria Mediate Glycerol Fermentation to Produce Electricity and Resist UV-B. 2020. 8(7): p. 1092.

Balasubramaniam, A., et al., Repurposing INCI-registered compounds as skin prebiotics for probiotic Staphylococcus epidermidis against UV-B. Sci Rep, 2020. 10(1): p. 21585.

Marito, S., et al., Electricity-producing Staphylococcus epidermidis counteracts Cutibacterium acnes. Scientific Reports, 2021. 11(1): p. 12001.

Stenesh, J., The Citric Acid Cycle, in Biochemistry, J. Stenesh, Editor. 1998, Springer US: Boston, MA. p. 273-291.

Liu, H., S. Cheng, and B.E. Logan, Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell. Environmental Science & Technology, 2005. 39(2): p. 658-662.

Narendhirakannan, R.T. and M.A.C. Hannah, Oxidative stress and skin cancer: an overview. Indian journal of clinical biochemistry : IJCB, 2013. 28(2): p. 110-115.

Marito, S., S. Keshari, and C.-M. Huang, PEG-8 Laurate Fermentation of Staphylococcus epidermidis Reduces the Required Dose of Clindamycin Against Cutibacterium acnes. 2020. 21(14): p. 5103.

Negari, I.P., S. Keshari, and C.M. Huang, Probiotic Activity of Staphylococcus epidermidis Induces Collagen Type I Production through FFaR2/p-ERK Signaling. Int J Mol Sci, 2021. 22(3).

Wang, Y., et al., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol, 2014. 98(1): p. 411-24.

Keshari, S., et al., Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. 2019. 20(18): p. 4477.

Kao, M.S., et al., Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus. Biotechnol J, 2017. 12(4).

Byrne, J.M., et al., Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science, 2015. 347(6229): p. 1473-6.

Yang, A.-J., et al., A Microtube Array Membrane (MTAM) Encapsulated Live Fermenting Staphylococcus epidermidis as a Skin Probiotic Patch against Cutibacterium acnes. 2019. 20(1): p. 14.

Traisaeng, S., et al., A Derivative of Butyric Acid, the Fermentation Metabolite of Staphylococcus epidermidis, Inhibits the Growth of a Staphylococcus aureus Strain Isolated from Atopic Dermatitis Patients. 2019. 11(6): p. 311.

Kao, M.S., et al., Colonization of nasal cavities by Staphylococcus epidermidis mitigates SARS-CoV-2 nucleocapsid phosphoprotein-induced interleukin (IL)-6 in the lung. Microb Biotechnol, 2022.

Downloads

Published

2022-09-27

Issue

Section

Articles