Efek Asam Klorogenat pada Ekspresi Mrna IL-6 dan CD86 Lobus Frontal Tikus Model Diabetes Mellitus
DOI:
https://doi.org/10.20961/plexus.v3i4.1815Keywords:
Asam Klorogenat, CGA, Neuroinflamasi, Diabetes MellitusAbstract
Pendahuluan: Diabetes Mellitus (DM) merupakan penyakit kronik dengan berbagai komplikasi, salah satunya yaitu Encephalopati Diabetikum (ED). Hiperglikemia pada DM akan mengakibatkan neuroinflamasi melalui jalur M1 proinflamatorik. Beberapa agen proinflamatori akan meningkat dengan aktifnya jalur ini, seperti IL-6. Neuroglia kemudian teraktivasi dan mengekspresikan CD86 pada membran sel. Asam klorogenat (CGA) merupakan senyawa polyphenol pada kopi yang memiliki efek antiinflamasi. Tujuan penelitian ini adalah untuk memperjelas efek CGA pada aktivasi mikroglia jalur M1 dengan melihat ekspresi mRNA IL-6 dan CD86 pada lobus frontal tikus dengan model DM.
Metode: 24 ekor tikus jantan secara acak dibagi menjadi enam kelompok yaitu : kontrol, DM 1,5 bulan dan DM 2 bulan, dan kelompok dengan pemberian CGA dengan tiga dosis berbeda (CGA1, CGA2, CGA3). Jaringan lobus frontal diambil untuk analisa ekspresi mRNA IL-6 dan CD86 menggunakan RT-PCR.
Hasil: Ekspresi mRNA IL-6 lobus frontal berbeda signifikan antara kelompok kontrol dengan DM1,5 (p=0.010); kontrol dengan DM2 (p=0.001); kelompok DM2 dengan CGA2 (p=0.028). Ekspresi mRNA CD86 lobus frontal trdapat perbedaan signifikan antara kelompok kontrol dengan semua kelompok DM, baik dengan CGA atau tanpa CGA (p<0.05). Kelompok DM2 berbeda signifikan dengan kelompok CGA2 (p=0.000) dan kelompok CGA3 (p=0,000).
Kesimpulan: Ekspresi mRNA penanda jaras proinflamatorik M1 (IL-6 dan CD86) pada neuroinflamasi lobus frontal akibat DM lebih rendah setelah pemberian CGA dengan dosis 25 mg/KgBB.
References
Amano, M., Nakayama, M., & Kaibuchi, K. (2010). Rho-Kinase/ROCK: A Key Regulator of the Cytoskeleton and Cell Polarity. Cytoskeleton, 67, 545–554. doi: 10.1002/cm.20472
Beurel, E., Grieco, S.F., & Jope, R.S. (2015). Diseases. Pharmacol Ther. Author April: 114–131. doi:10.1017/S0003598X00113821
Camfield, D.A., Silber, B.Y., Scholey, A.B., Nolidin, K., Goh, A., & Stough, C. (2013). A randomised placebo-controlled trial to differentiate the acute cognitive and mood effects of chlorogenic acid from decaffeinated coffee. PLoS ONE , 8, Article e82897. https://doi.org/10.1371/journal.pone.0082897
Cropley, V., Croft, R., Silber, B., Neale, C., Scholey, A., Stough, C., & Schmitt, J. (2012). Does coffee enriched with chlorogenic acids improve mood and cognition after acute administration in healthy elderly: A pilot study. Psychopharmacology, 219, 737–749. Doi: 10.1007/s00213-011-2395-0
Chen, H., O’Reilly, E.J., & Schwarzschild, M.A. (2008). Ascherio, A. Peripheral Inflammatory Biomarkers and Risk of Parkinson’s Disease. Am. J. Epidemiol., 167, 90–95. 10.1093/aje/kwm260
Chen, J., Sun, Z., Jin, M., Tu, Y., Wang, S., Yang, X., Chen, Q., Zhang, X., Han, Y., & Pi, R. (2017). Inhibition of AGEs/RAGE/Rho/ROCK Pathway Suppresses Non-Specific Neuroinflammation by Regulating BV2 Microglial M1/M2 Polarization through the NF-KB Pathway. J. Neuroimmunol., 305, 108–114. DOI: 10.1016/j.jneuroim.2017.02.010
Fan, Z., Zhang, W., Cao, Q., Zou, L., Fan, X., Qi, C., Yan, Y., Song, B., & Wu, B. (2022). JAK2/STAT3 Pathway Regulates Microglia Polarization Involved in Hippocampal Inflammatory Damage Due to Acute Paraquat Exposure. Ecotoxicol. Env. Saf, 234, 113372. https://doi.org/10.1016/j.ecoenv.2022.113372
Gao, J., He, X., Ma, Y., Zhao, X., Hou, X., Hao, E., Deng, J., & Bai, G. (2018). Chlorogenic acid targeting of the AKT PH domain activates AKT/GSK3β/FOXO1 signaling and improves glucose metabolism. Nutrients 10. doi:10.3390/nu10101366
Giugliano, D., Ceriello, A., & Esposito, K. (2008). Glucose metabolism and hyperglycemia. Am. J. Clin. Nutr. 87: 217–222. doi:10.1093/ajcn/87.1.217s
Glovaci, D., Fan, W., & Wong, N.D. (2019). Epidemiology of Diabetes Mellitus and Cardiovascular Disease. Curr. Cardiol. Rep. 21: 1–8. doi:10.1007/s11886-019-1107-y
Gonthier, M.P., Verny, M.A., Besson, C., Rémésy, C., & Scalbert, A. (2003). Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. Am. Soc. Nutr. Sci. 133: 1853–1859. doi:10.1093/jn/133.6.1853
Gul, Z., Demircan, C., Bagdas, D., & Buyukuysal, R.L. (2016). Protective Effects of Chlorogenic Acid and its Metabolites on Hydrogen Peroxide-Induced Alterations in Rat Brain Slices: A Comparative Study with Resveratrol. Neurochem. Res., 41, 2075–2085. DOI:10.1007/s11064-016-1919-8
Heitman, E., & Ingram, D.K. (2014). Cognitive and neuroprotective effects of chlorogenic acid. Nutr. Neurosci. 1–6. DOI: 10.1179/1476830514Y.0000000146
Isik, S., Yeman, KB., Akbayir, R., Seyhali, R., Arpaci, T. (2023). Microglia Mediated Neuroinflammation in Parkinson's Disease. Cells., 5;12(7):1012. doi: 10.3390/cells12071012.
Kaidanovich-Beilin, O., & Woodgett, J.R. (2011). GSK-3: Functional Insights from Cell Biology and Animal Models. Front. Mol. Neurosci. 4: 1–25. doi:10.3389/fnmol.2011.00040
Kwon, S., Lee, H., Kim, J., Hong, S., Kim, H., Jo, T., et al. (2010). Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol. 649: 210–217. doi:10.1016/j.ejphar.2010.09.001
Lee, K., Lee, J.S., Jang, H.J., Kim, S.M., Chang, M.S., Park, S.H., Kim, K.S., Bae, J., Park, J.W., Lee, B., et al. (2012). Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. Eur. J. Pharmacol., 689, 89–95. DOI: 10.1016/j.ejphar.2012.05.028
Lawrence, T., & Natoli, G. (2011). Transcriptional Regulation of Macrophage Polarization: Enabling Diversity with Identity. Nat. Rev. Immunol., 11, 750–761. DOI: 10.1038/nri3088
Mira, A., Yamashita, S., Katakura, Y., & Shimizu, K. (2015). In vitro neuroprotective activities of compounds from Angelica shikokiana Makino. Molecules, 20, 4813–4832. https://doi.org/10.3390/molecules20034813
Moheet, A., Mangia, S., & Seaquist, E.R. (2015). Impact of diabetes on cognitive function and brain structure. Ann. N. Y. Acad. Sci. 1353: 60–71. doi:10.1111/nyas.12807
Mount, M.P., Lira, A., Grimes, D., Smith, P.D., Faucher, S., Slack, R., Anisman, H., Hayley, S., & Park, D.S. (2007). Involvement of Interferon-in Microglial-Mediated Loss of Dopaminergic Neurons. J. Neurosci., 27, 3328. DOI: 10.1523/JNEUROSCI.5321-06.2007
Naveed, M., Hejazi, V., Abbas, M., Kamboh, A.A., Khan, G.J., Shumzaid, M., et al. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 97: 67–74. doi:10.1016/j.biopha.2017.10.064
Nguyen, V., Taine, E.G., Meng, D., Cui, T., & Tan, W. (2024). Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients, 23;16(7):924. doi: 10.3390/nu16070924
Ohnishi, R., Ito, H., Iguchi, A., Shinomiya, K., Kamei, C., Hatano, T., & Yoshida, T. (2006). Effects of chlorogenic acid and its metabolites on spontaneous locomotor activity in mice. Biosci. Biotechnol. Biochem., 70, 2560–2563. DOI: 10.1271/bbb.60243
Piatkowska-Chmiel, I., Herbet, M., Gawronska-Grzywacz, M., Ostrowska-Lesko, M., & Dudka, J., (2021). The role of molecular and inflammatory indicators in the assessment of cognitive dysfunction in a mouse model of diabetes. Int. J. Mol. Sci. 22. doi:10.3390/ijms22083878
Sandireddy, R., Yerra, V.G., Areti, A., Komirishetty, P., & Kumar, A. (2014). Neuroinflammation and oxidative stress in diabetic neuropathy: Futuristic strategies based on these targets. Int. J. Endocrinol. 2014. doi:10.1155/2014/674987
Shen, W., Qi, R., Zhang, J., Wang, Z., Wang, H., Hu, C., Zhao, Y., Bie, M., Wang, Y., Fu, Y., et al. (2012). Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Res. Bull., 88, 487–494. DOI: 10.1016/j.brainresbull.2012.04.010
Souder, D.C., & Anderson, R.M. (2019). An expanding GSK3 network: implications for aging research. GeroScience 41: 369–382. doi:10.1007/s11357-019-00085-z
Stankiewicz, T.R., & Linseman, D.A. (2014). Rho Family GTPases: Key Players in Neuronal Development, Neuronal Survival, and Neurodegeneration. Front. Cell. Neurosci., 8, 314. DOI: 10.3389/fncel.2014.00314
Varinou, L., Ramsauer, K., Karaghiosoff, M., Kolbe, T., Pfeffer, K., Müller, M., & Decker, T. (2003) Phosphorylation of the Stat1 Transactivation Domain Is Required for Full-Fledged IFN--Dependent Innate Immunity. Immunity, 19, 793–802. DOI: 10.1016/s1074-7613(03)00322-4
Wang, X., Fan, X., Yuan, S., Jiao, W., Liu, B., Cao, J., & Jiang, W. (2017). Chlorogenic acid protects against aluminium-induced cytotoxicity through chelation and antioxidant actions in primary hippocampal neuronal cells. Food Funct., 8, 2924–2934. https://doi.org/10.1039/C7FO00659D
Wang, C., Song, S., Zhang, Y., Ge, Y., Fang, X., Huang, T., Du, J., & Gao, J. (2015). Inhibition of the Rho/Rho Kinase Pathway Prevents Lipopolysaccharide-Induced Hyperalgesia and the Release of TNF-and IL-1 in the Mouse Spinal Cord. Sci. Rep., 5, 14553. DOI: 10.1038/srep14553
Xin, P., Xu, X., Deng, C., Liu, S., Wang, Y., Zhou, X., Ma, H., Wei, D., & Sun, S. (2020). The Role of JAK/STAT Signaling Pathway and Its Inhibitors in Diseases. Int. Immunopharmacol., 80, 106210. DOI: 10.1016/j.intimp.2020.106210
Yang, Z., & Wang, K.K.W. (2015). Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 38: 364–374. doi:10.1016/j.tins.2015.04.003
Yao, J., Peng, S., Xu, J., & Fang, J. (2019). Reversing ROS-mediated neurotoxicity by chlorogenic acid involves its direct antioxidant activity and activation of Nrf2-ARE signaling pathway. Biofactors, 45, 616–626. DOI: 10.1002/biof.1507
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Fauziyatul Munawaroh, Aisyah Amanda Hanif , Asri Ragil Kemuning, Iffa Mutmainah, Yenny Rachmawati, Naufal Muharam Nurdin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright @2022. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).