A Ekstrak Etanolik Daun Kelor (Moringa oleifera, Lam) Menurunkan Ekspresi Caspase-3 Testis Tikus Wistar (Rattus norvegicus) Model Sindrom Metabolik Terinduksi

Authors

  • Thania Nur Zhahira Program Studi Kedokteran, Fakultas Kedokteran, Universitas Sebelas Maret, Surakarta, Indonesia
  • Dyah Ratna Budiani Departemen Patologi Anatomi, Fakultas Kedokteran Universitas Sebelas Maret, Surakarta, Indonesia
  • Novan Adi Setyawan Departemen Biokimia, Fakultas Kedokteran Universitas Sebelas Maret, Surakarta, Indonesia

DOI:

https://doi.org/10.20961/plexus.v3i2.229

Keywords:

Caspase-3, Ekstrak Daun Kelor, Sindrom Metabolik, Testis, Spermatogenesis

Abstract

Pendahuluan: Sindrom metabolik berpengaruh terhadap kesuburan pria karena dapat menyebabkan infertilitas. Infertilitas antara lain disebabkan oleh kematian berlebih sel – sel spermatogenik selama spermatogenesis. Caspase-3 memiliki peran penting sebagai eksekutor apoptosis. Kandungan ekstrak etanolik daun kelor diketahui dapat mencegah apoptosis dengan menurunkan ekspresi caspase-3. Penelitian ini dilakukan dengan tujuan mengetahui pengaruh peningkatan dosis ekstrak etanolik daun kelor terhadap tingkat ekspresi caspase-3 pada jaringan testis tikus Wistar model sindrom metabolik.

Metode: Metode penelitian yang digunakan adalah eksperimental laboratorik. Tikus Wistar berjumlah 30 ekor dibagi menjadi 5 kelompok dengan jumlah yang sama. KI sebagai kelompok kontrol negatif, KII sebagai kelompok sindrom metabolik terinduksi, KIII, KIV, dan KV sebagai kelompok sindrom metabolik terinduksi yang diberi dosis ekstrak etanolik daun kelor secara berurutan sebesar 150 mg/kgBB, 250 mg/kgBB, dan 350 mg/kgBB. Ekspresi caspase-3 dihitung menggunakan metode semikuantitatif IDS. Selanjutnya, ekspresi caspase-3 dianalisis menggunakan uji One-Way ANOVA, Post Hoc Tukey HSD, dan uji regresi linier.

Hasil: KII memiliki skor ekspresi caspase-3 tertinggi yaitu 89,45 dan KV memiliki skor ekspresi caspase-3 terendah yaitu 25,93. Hasil uji One-Way ANOVA ekspresi caspase-3 pada jaringan testis tikus Wistar adalah 0.00 (p<0.05) yang artinya terdapat perbedaan signifikan ekspresi caspase-3 pada semua kelompok. Perbedaan bermakna terdapat antara KI dengan KII dan KII dengan KIII, KIV, dan KV. Hasil uji regresi linier menunjukkan pengaruh negatif antara dosis ekstrak etanolik daun kelor terhadap ekspresi caspase-3.

Kesimpulan: Pemberian dosis ekstrak etanolik daun kelor yaitu 150 mg/kgBB, 250 mg/kgBB, dan 350 mg/kgBB dapat menurunkan ekspresi caspase-3.

References

Abd HH, Ahmed HA and Mutar TF (2020). Moringa Oleifera Leaves Extract Modulates Toxicity, Sperms Alterations, Oxidative Stress, and Testicular Damage Induced by Tramadol in Male Rats. Toxicology Research, (February), pp.: 101-106. https://doi.org/10.1093/toxres/tfaa009

Adewoyin M, Ibrahim M, Roszaman R, Isa M, Alewi N, Rafa A and Anuar M (2017). Male Infertility: The Effect of Natural Antioxidants and Phytocompounds on Seminal Oxidative Stress. Diseases, 5(1), pp.: 9. https://doi.org/10.3390/diseases5010009

Ajuogu PK, Mgbere OO, Bila DS and McFarlane JR (2019). Hormonal Changes, Semen Quality and Variance in Reproductive Activity Outcomes of Post Pubertal Rabbits Fed Moringa Oleifera Lam. Leaf Powder. Journal of Ethnopharmacology, 233, pp.: 80-86.https://doi.org/10.1016/j.jep.2018.12.036

Almeida, C., Correia, S., Rocha, E., Alves, A., Ferraz, L., Silva, J., Sousa, M., & Barros, A. (2013). Caspase signalling pathways in human spermatogenesis. Journal of assisted reproduction and genetics, 30(4), 487-495. https://doi.org/10.1007/s10815-013-9938-8

https://doi.org/10.1007/s10815-013-9938-8

Asadi N, Bahmani M, Kheradmand A and Rafieian-Kopaei M (2017). The Impact of Oxidative Stress on Testicular Function and the Role of Antioxidants in Improving It: A Review. Journal of Clinical and Diagnostic Research, 11(5), pp.: IE01-IE05. https://doi.org/10.7860/JCDR/2017/23927.9886

Cheng L, Yi X, Shi Y, Yu S, Zhang L, Wang J and Su P (2020). Abnormal Lipid Metabolism Induced Apoptosis of Spermatogenic Cells by Increasing Testicular HSP60 Protein Expression. Andrologia, 52(11), pp.: 1-10. https://doi.org/10.1111/and.13781

González-Burgos, E., Ureña-Vacas, I., Sánchez, M., & Gómez-Serranillos, M. P. (2021). Nutritional Value of Moringa oleifera Lam. Leaf Powder Extracts and Their Neuroprotective Effects via Antioxidative and Mitochondrial Regulation. Nutrients, 13(7), 2203. https://doi.org/10.3390/nu13072203

Hifnawy MS, Aboseada MA, Hassan HM, Aboul Magd AM, Tohamy AF, Abdel-Kawi SH, Rateb ME, El Naggar EMB, et al. (2020). Testicular Caspase-3 and β-Catenin Regulators Predicted via Comparative Metabolomics and Docking Studies. Metabolites, 10(1). https://doi.org/10.3390/metabo10010031

Kiokias S and Oreopoulou V (2021). A Review of the Health Protective Effects of Phenolic Acids against a Range of Severe Pathologic Conditions (Including Coronavirus-Based Infections). Molecules, 26(17). https://doi.org/10.3390/molecules26175405

Kou X, Li B, Olayanju JB, Drake JM and Chen N (2018). Nutraceutical or Pharmacological Potential of Moringa Oleifera Lam. Nutrients, 10(3). https://doi.org/10.3390/nu10030343

López M, Ríos-Silva M, Huerta M, Cárdenas Y, Bricio-Barrios JA, Díaz-Reval MI, Urzúa Z, Huerta-Trujillo M, et al. (2018). Effects of Moringa Oleifera Leaf Powder on Metabolic Syndrome Induced in Male Wistar Rats: A Preliminary Study. Journal of International Medical Research, 46(8), pp.: 3327-3336. https://doi.org/10.1177/0300060518781726

Lotti F, Marchiani S, Corona G and Maggi M (2021). Metabolic Syndrome and Reproduction. International Journal of Molecular Sciences, 22(4), pp.: 1-28. https://doi.org/10.3390/ijms22041988

Nayak G, Rao A, Mullick P, Mutalik S, Kalthur SG, Adiga SK and Kalthur G (2020). Ethanolic Extract of Moringa Oleifera Leaves Alleviate Cyclophosphamide-Induced Testicular Toxicity by Improving Endocrine Function and Modulating Cell Specific Gene Expression in Mouse Testis. Journal of Ethnopharmacology, 259(November 2019), pp.: 112922. https://doi.org/10.1016/j.jep.2020.112922

Nna VU, Bakar ABA, Ahmad A, Eleazu CO and Mohamed M (2019). Oxidative Stress, NF-ΚB-Mediated Inflammation and Apoptosis in the Testes of Streptozotocin-Induced Diabetic Rats: Combined Protective Effects of Malaysian Propolis and Metformin. Antioxidants, 8(10). https://doi.org/10.3390/antiox8100465

Nolan, P. B., Carrick-Ranson, G., Stinear, J. W., Reading, S. A., & Dalleck, L. C. (2017). Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Preventive medicine reports, 7, 211-215. https://doi.org/10.1016/j.pmedr.2017.07.004

Oboh G, Ademiluyi AO, Ademosun AO, Olasehinde TA, Oyeleye SI, Boligon AA and Athayde ML (2015). Phenolic Extract from Moringa Oleifera Leaves Inhibits Key Enzymes Linked to Erectile Dysfunction and Oxidative Stress in Rats' Penile Tissues. Biochemistry Research International, 2015. https://doi.org/10.1155/2015/175950

Pereira SC, Crisóstomo L, Sousa M, Oliveira PF and Alves MG (2020). Metabolic Diseases Affect Male Reproduction and Induce Signatures in Gametes That May Compromise the Offspring Health. Environmental Epigenetics, 6(1), pp.: 1-18. https://doi.org/10.1093/eep/dvaa019

Pourmirzaei F, Ranjbaran M, Kadkhodaee M, Kianian F, Lorian K, Abdi A, Hajiaghaei M and Seifi B (2021). Sperm and Testicular Dysfunction during Cecal Ligation and Puncture-Induced Sepsis in Male Rats and Effects of Tannic Acid through Reducing Testicular Oxidative Stress and Inflammation. Iranian Journal of Basic Medical Sciences, 24(11), pp.: 1554-1560. doi: 10.22038/IJBMS.2021.59375.13183.

Saibabu, V., Fatima, Z., Khan, L. A., & Hameed, S. (2015). Therapeutic Potential of Dietary Phenolic Acids. Advances in pharmacological sciences, 2015, 823539. https://doi.org/10.1155/2015/823539

Singh D and Chaudhuri PK (2018). Structural Characteristics, Bioavailability and Cardioprotective Potential of Saponins. Integrative Medicine Research, 7(1), pp.: 33-43. https://doi.org/10.1016/j.imr.2018.01.003

Smeriglio A, Barreca D, Bellocco E and Trombetta D (2017). Proanthocyanidins and Hydrolysable Tannins: Occurrence, Dietary Intake and Pharmacological Effects. British Journal of Pharmacology, 174(11), pp.: 1244-1262. https://doi.org/10.1111/bph.13630

Ugur, M. R., Dinh, T., Hitit, M., Kaya, A., Topper, E., Didion, B., & Memili, E. (2020). Amino Acids of Seminal Plasma Associated With Freezability of Bull Sperm. Frontiers in cell and developmental biology, 7, 347. https://doi.org/10.3389/fcell.2019.00347

Vergara-Jimenez M, Almatrafi MM and Fernandez ML (2017). Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease. Antioxidants, 6(4), pp.: 1-13.

https://doi.org/10.3390/antiox6040091

Wang Y, Gao Y, Ding H, Liu S, Han X, Gui J and Liu D (2017). Subcritical Ethanol Extraction of Flavonoids from Moringa Oleifera Leaf and Evaluation of Antioxidant Activity. Food Chemistry, 218, pp.: 152-158. https://doi.org/10.1016/j.foodchem.2016.09.058

Ye RJ, Yang JM, Hai DM, Liu N, Ma L, Lan XB, Niu JG, Zheng P, et al. (2020). Interplay between Male Reproductive System Dysfunction and the Therapeutic Effect of Flavonoids. Fitoterapia, 147, pp.: 104756. https://doi.org/10.1016/j.fitote.2020.104756

Zhao J, Zhai L, Liu Z, Wu S and Xu L (2014). Leptin Level and Oxidative Stress Contribute to Obesity-Induced Low Testosterone in Murine Testicular Tissue. Oxidative Medicine and Cellular Longevity, 2014(1). https://doi.org/10.1155/2014/190945

Zhu G, Zhang Yuting, Dong J, Liu Y, Zhao F, Li T, Shi Z, Zhang Yanping, et al. (2021). Association between Body Mass Index and Male Sperm Apoptosis and Apoptosis-Related Factors. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, pp.: 1043-1051. https://doi.org/10.2147/DMSO.S289923

Downloads

Published

2024-05-14

Issue

Section

Articles