Ekstrak Etanolik Daun Kelor (Moringa oleifera, Lam.) Menurunkan Ekspresi Reseptor ACE2 (Pintu Masuk SARS-CoV-2) Duodenum Tikus Wistar (Rattus norvegicus) Jantan Model Sindrom Metabolik Terinduksi

Authors

  • Nabila Haningtyas Faculty of Medicine Sebelas Maret University
  • Dyah Ratna Budiani Pathology Anatomy Laboratory, Faculty of Medicine Sebelas Maret University
  • Jarot Subandono Biochemistry Laboratory, Faculty of Medicine Sebelas Maret University

DOI:

https://doi.org/10.20961/plexus.v1i2.26

Abstract

ABSTRAK

Pendahuluan: Tanda-tanda umum sindrom metabolik (SM) mampu mempengaruhi integritas epitel duodenum, inflamasi duodenum, mikrobiota usus, dan aktivasi sistem RAS. Daun kelor memeiliki berbagai manfaat dalam mengatasi faktor risiko dari sindrom metabolik. Penelitian ini bertujuan untuk melihat pengaruh pemberian ekstrak etanolik daun kelor terhadap tingkat ekspresi reseptor ACE2 pada tikus Wistar model sindrom metabolik. Peningkatan ekspresi ACE2 akan meningkatkan juga risiko terinfeksi SARS-CoV-2. Ekspresi ACE2 yang meningkat akan memicu lebih banyak jalan masuk bagi SARS-CoV-2 dan memungkinkan pelepasan sitokin berlebih.

Metode: Penelitian bersifat eksperimental laboratorik dengan post-test only control group design dan menggunakan teknik purposive sampling. Sampel penelitian adalah 30 ekor tikus yang dibagi menjadi 5 kelompok yaitu KI sebagai kelompok kontrol; KII sebagai kelompok dengan pemberian pakan tinggi lemak dan induksi streptozotocin-nicotinamide; KIII, KIV, dan KV sebagai kelompok dengan pemberian pakan tinggi lemak dan induksi streptozotocin-nicotinamide serta ekstrak etanolik daun kelor selama 28 hari pada dosis 150 mg/KgBB, 250 mg/KgBB, dan 350 mg/KgBB. Tingkat ekspresi ACE2 dihitung menggunakan rumus IDS kemudian dianalisis dengan uji independent t-test, uji One-Way ANOVA yang dilanjutkan uji post-hoc Tukey HSD, dan uji regresi linier sederhana.

Hasil: Skor ekspresi ACE2 tertinggi ditemukan pada kelompok KII (279.04) dan nilai terendah pada kelompok KV (218.16). Uji statistik menunjukkan perbedaan ekspresi ACE2 duodenum yang signifikan (p < 0.05) pada kelompok KI dan KII terhadap KIV dan KV; KII terhadap KIV; KIV terhadap KI, KII, dan KIII; dan KV terhadap KI dan KII. Selain kelompok yang telah disebutkan, didapatkan hasil perbedaan ekspresi ACE2 duodenum tidak signifikan (p > 0.05).

Kesimpulan: Ekstrak etanolik daun kelor (Moringa oleifera, Lam.) dengan dosis 250 mg/KgBB dan 350 mg/KgBB mampu menurunkan tingkat ekspresi ACE2 jaringan duodenum tikus Wistar sindrom metabolik secara signifikan.

Kata Kunci: Sindrom Metabolik; Duodenum; ACE2; Moringa oleifera; Ekstrak Daun Kelor

 

References

Al Heialy, S., Hachim, M. Y., Senok, A., Gaudet, M., Abou Tayoun, A., Hamoudi, R., Alsheikh-Ali, A., & Hamid, Q. (2020). Regulation of Angiotensin- Converting Enzyme 2 in Obesity: Implications for COVID-19. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.555039

Ames, M. K., Atkins, C. E., & Pitt, B. (2019). The renin-angiotensin-aldosterone system and its suppression. Journal of Veterinary Internal Medicine, 33(2), 363–382. https://doi.org/10.1111/jvim.15454

Amiraragab, B., Hussein, S. A., Alm-Eldeen, A.-E., Hafe z, A., & Mohamed, T. (2017). Diabetes Management Saponins and their potential role in diabetes mellitus. Diabetes Manag, 7(1), 148–158. http://www.openaccessjournals.com/articles/saponins-and-their-potential-role-in-diabetes-mellitus.pdf

Ballard, C. R., & Maróstica, M. R. (2018). Health Benefits of Flavonoids. In Bioactive Compounds: Health Benefits and Potential Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814774-0.00010-4

Cole-Jeffrey, C. T., Liu, M., Katovich, M. J., Raizada, M. K., & Shenoy, V. (2015). ACE2 and Microbiota: Emerging Targets for Cardiopulmonary Disease Therapy. Journal of Cardiovascular Pharmacology, 66(6), 540–550. https://doi.org/10.1097/FJC.0000000000000307

Cox-Georgian, D., Ramadoss, N., Dona, C., & Basu, C. (2019). Therapeutic and medicinal uses of terpenes. Medicinal Plants: From Farm to Pharmacy, 333–359. https://doi.org/10.1007/978-3-030-31269-5_15

De Filippis, A., Ullah, H., Baldi, A., Dacrema, M., Esposito, C., Garzarella, E. U., Santarcangelo, C., Tantipongpiradet, A., & Daglia, M. (2020). Gastrointestinal disorders and metabolic syndrome: Dysbiosis as a key link and common bioactive dietary components useful for their treatment. International Journal of Molecular Sciences, 21(14), 1–26. https://doi.org/10.3390/ijms21144929

Emanuela, F., Grazia, M., Marco, D. R., Maria Paola, L., Giorgio, F., & Marco, B. (2012). Inflammation as a link between obesity and metabolic syndrome. Journal of Nutrition and Metabolism, 2012. https://doi.org/10.1155/2012/476380

Emilsson, V., Gudmundsson, E. f., Aspelund, T., Jonsson, B. G., Gudjonsson, A., Launer, L. J., Lamb, J. R., Gudmundsdottir, V., Jennings, L. L., & Gudnason, V. (2020). ACE2 Levels are Altered in Comorbidities Linked to Severe Outcome in COVID-19. MedRxiv, 1–14. https://doi.org/10.1101/2020.06.04.20122044

Fändriks, L. (2017). Roles of the gut in the metabolic syndrome: an overview. Journal of Internal Medicine, 281(4), 319–336. https://doi.org/10.1111/joim.12584

Gheblawi, M., Wang, K., Viveiros, A., Nguyen, Q., Zhong, J. C., Turner, A. J., Raizada, M. K., Grant, M. B., & Oudit, G. Y. (2020). Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circulation Research, 1456–1474. https://doi.org/10.1161/CIRCRESAHA.120.317015

Haris, S., & Tambunan, T. (2016). Hipertensi pada Sindrom Metabolik. Sari Pediatri, 11(4), 257. https://doi.org/10.14238/sp11.4.2009.257-63

Hikmet, F., Méar, L., Edvinsson, Å., Micke, P., Uhlén, M., & Lindskog, C. (2020). The protein expression profile of ACE2 in human tissues. Molecular Systems Biology, 16(7), 1–16. https://doi.org/10.15252/msb.20209610

Hubrecht, R., & Kirkwood, J. (2010). The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals (8th ed.). University Federation of Animal Welfare.

Ikawaty, R. (2020). Dinamika Interaksi Reseptor ACE2 dan SARS-CoV-2 Terhadap Manifestasi Klinis COVID-19. KELUWIH: Jurnal Kesehatan Dan Kedokteran, 1(2), 70–76. https://doi.org/10.24123/kesdok.v1i2.2869

Koentjoro, M. P., Donastin, A., & Prasetyo, E. N. (2020). Potensi Senyawa Bioaktif Tanaman Kelor Penghambat Interaksi Angiotensin-Converting Enzyme 2 Pada Sindroma Sars-Cov-2. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 7(2), 259–270. https://doi.org/10.29122/jbbi.v7i2.4156

Marrelli, M., Conforti, F., Araniti, F., & Statti, G. A. (2016). Effects of saponins on lipid metabolism: A review of potential health benefits in the treatment of obesity. Molecules, 21(10). https://doi.org/10.3390/molecules21101404

Mbikay, M. (2012). Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Frontiers in Pharmacology, 3 MAR(March), 1–12. https://doi.org/10.3389/fphar.2012.00024

Metwally, F. M., Rashad, H. M., Ahmed, H. H., Mahmoud, A. A., Abdol Raouf, E. R., & Abdalla, A. M. (2017). Molecular mechanisms of the anti-obesity potential effect of Moringa oleifera in the experimental model. Asian Pacific Journal of Tropical Biomedicine, 7(3), 214–221. https://doi.org/10.1016/j.apjtb.2016.12.007

Nair, A., & Joseph, J. T. (2020). Computational screening of phytocompounds from Moringa oleifera leaf as potential inhibitors of SARS-CoV-2 Mpro. Research Square, 1–14.

Obukhov, A. G., Stevens, B. R., Prasad, R., Calzi, S. L., Boulton, M. E., Raizada, M. K., Oudit, G. Y., & Grant, M. B. (2020). Sars-cov-2 infections and ace2: Clinical outcomes linked with increased morbidity and mortality in individuals with diabetes. Diabetes, 69(9), 1875–1886. https://doi.org/10.2337/dbi20-0019

Rini, S. (2015). Sindrom Metabolik. Fakultas Kedokteran Universitas Lampung, 4(4), 88–93.

Rochlani, Y., Pothineni, N. V., Kovelamudi, S., & Mehta, J. L. (2017). Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Therapeutic Advances in Cardiovascular Disease, 11(8), 215–225. https://doi.org/10.1177/1753944717711379

Samavati, L., & Uhal, B. D. (2020). ACE2, Much More Than Just a Receptor for SARS-COV-2. Frontiers in Cellular and Infection Microbiology, 10(June), 1–9. https://doi.org/10.3389/fcimb.2020.00317

Sieniawska, E. (2015). Activities of tannins-From in Vitro studies to clinical trials. Natural Product Communications, 10(11), 1877–1884. https://doi.org/10.1177/1934578x1501001118

Suhaema, & Masthalina, H. (2015). Pola Konsumsi Dengan Terjadinya Sindrom Metabolik di Indonesia. Jurnal Kesehatan Masyarakat Nasional, 9(4), 340–347.

Suman, R. K., Ray Mohanty, I., Borde, M. K., Maheshwari, U., & Deshmukh, Y. A. (2016). Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats. Advances in Pharmacological Sciences, 2016. https://doi.org/10.1155/2016/9463476

van Baar, A. C. G., Nieuwdorp, M., Holleman, F., Soeters, M. R., Groen, A. K., & Bergman, J. J. G. H. M. (2018). The Duodenum harbors a Broad Untapped Therapeutic Potential. Gastroenterology, 154(4), 773–777. https://doi.org/10.1053/j.gastro.2018.02.010

Vergara-Jimenez, M., Almatrafi, M. M., & Fernandez, M. L. (2017). Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants, 6(4), 1–13. https://doi.org/10.3390/antiox6040091

Viana, S. D., Nunes, S., & Reis, F. (2020). ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities – Role of gut microbiota dysbiosis. Ageing Research Reviews, 62(June 2021). https://doi.org/10.1016/j.arr.2020.101123

Yanai, H. (2020). Metabolic Syndrome and COVID-19. 11(6), 360–365.

Zhang, H., Li, H. B., Lyu, J. R., Lei, X. M., Li, W., Wu, G., Lyu, J., & Dai, Z. M. (2020). Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. International Journal of Infectious Diseases, 96, 19–24. https://doi.org/10.1016/j.ijid.2020.04.027

Downloads

Published

2022-04-07