PEMANFAATAN DATA PENGINDERAAN JAUH DAN SISTEM INFORMASI GEOGRAFIS (SIG) UNTUK ANALISA BANJIR (STUDI KASUS: KECAMATAN WANAREJA KABUPATEN CILACAP)
DOI:
https://doi.org/10.20961/ijed.v2i1.608Keywords:
Flood, Disaster, GIS, Remote SensingAbstract
Wanareja Subdistrict is one of 24 subdistricts in Cilacap Regency which experiences floods every year. In 2022, until September, Wanareja District will experience four floods. Utilization of remote sensing and Geographic Information Systems (GIS) can be used to determine the level of vulnerability to flood disasters. This study aims to process the parameters that cause flooding and create a flood hazard map using Geographic Information System (GIS) aplikasi. The method used is scoring, weighting, and overlaying the parameters that cause flooding, namely land use, rainfall, slope, altitude, soil type, and river buffer which are processed using the ArcGIS 10.8 application. The results of this study are in the form of a flood vulnerability map which shows that Wanareja District has three levels of flood vulnerability, namely safe, low, and moderate. The low vulnerability level is the area that has the largest area, namely 9927.26 Ha (52%), while the medium vulnerability level is 7254.53 Ha (38%), and the safe vulnerability level has the smallest area, namely 1909.09 Ha (10%) of the total area in the Wanareja District of 19090.88 Ha
References
Badan Nasional Penanggulangan Bencana (BNPB). 2022. Data Informasi Bencana Indonesia. [online] dari : https://dibi.bnpb.go.id/ diakses pada 27 September 2022.
Jayantara, I Gst Ngr Yoga. Implementasi QGIS untuk Mengestimasi Kerugian Ekonomi Akibat Banjir di Kabupaten Bandung.
Jendro, dkk. 2022. Studi Kasus Kebijakan Publik Provinsi DKI : Volume 3 Membangun Kota Berkelanjutan. BPSDM Provinsi DKI Jakarta dan Universitas Paramadina.
Kurniawan, Agusta. 2020. Evaluasi Pengukuran Curah Hujan Antara Hasil Pengukuran Permukaan (AWS, HELLMAN, OBS) dan Hasil Estimasi (Citra Satelit = GSMaP) di Stasiun Klimatologi Mlati Tahun 2018. Jurnal Geografi, Edukasi dan Lingkungan (JGEL) Vol. 4, No. 1, Januari 2020: 1-7
Maryono, Agus. (2020). Menangani Banjir, Kekeringan dan Lingkungan. Yogyakarta : UGM Press.
Octarina, T. M., Dewa N. N. P., dan Ni Kadek A. W. 2019. Penginderaan Jauh Pemrosesan Data Satelit Landsat 8 Untuk Deteksi Genangan. Merpati, Vol. 7, No.1 April 2019 : 77-85
Pranadiarso, Tedi, Entin Hidayah, dan Gusfan Halik. 2022. Pemetaan Cepat Genangan Banjir Menggunakan Teknologi Remote Sensing. Rekayasa Sipil, Vol. 16, No. 2, Juni 2022 : 132 – 141
Raharjo, Rinto. 2021. Panduan Keselamatan Saat Bencana Banjir. Yogyakarta : DIVA Press.
Rauf, Syafruddin, A. Faisal Aboe, dan Herna Wahyuni. 2017. Dampak Banjir Terhadap Infrastruktur di Kabupaten Wajo Berbasis Data Citra Modis NRT (Near Real Time Global Flood). Prosiding Forum Studi Transportasi antar Perguruan Tinggi. 4-5 November 2017
Wahid, Hartina dan Usman. 2017. Analisis Karakteristik dan Klasifikasi Curah Hujan di Kabupaten Polewali Mandar. Jurnal Sainsmat, Vol. VI, No. 1, Maret 2017 : 15-27
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Indonesian Journal of Environment and Disaster
This work is licensed under a Creative Commons Attribution 4.0 International License.